Volume 8, Issue 2, December 2020, Page: 52-59
pH-sensitive Pickering Emulsion Stabilized by Hydroxyapatite Nanoparticles: Stability and Controlled Release Study
Papa Mady Sy, Department of Pharmacy, Laboratory of Pharmaceutical Physics, Faculty of Medicine, Pharmacy and Odontology, Cheikh Anta Diop University, Dakar, Senegal
Louis Augustin Diaga Diouf, Department of Pharmacy, Laboratory of Pharmaceutical Physics, Faculty of Medicine, Pharmacy and Odontology, Cheikh Anta Diop University, Dakar, Senegal
Alphonse Rodrigue Djiboune, Department of Pharmacy, Laboratory of Pharmaceutical Physics, Faculty of Medicine, Pharmacy and Odontology, Cheikh Anta Diop University, Dakar, Senegal
Sidy Mouhamed Dieng, Department of Pharmacy, Laboratory of biopharmacy, Health Training and Research Unit, Thies University, Thies, Senegal
Mamadou Soumboundou, Department of Pharmacy, Service of Medical Biophysics, Health Training and Research Unit, Thies University, Thies, Senegal
Cecile Diop, Department of Pharmacy, Laboratory of Pharmaceutical Physics, Faculty of Medicine, Pharmacy and Odontology, Cheikh Anta Diop University, Dakar, Senegal
Toro Diop, Department of Pharmacy, Laboratory of Pharmaceutical Physics, Faculty of Medicine, Pharmacy and Odontology, Cheikh Anta Diop University, Dakar, Senegal
Gora Mbaye, Department of Pharmacy, Laboratory of Pharmaceutical Physics, Faculty of Medicine, Pharmacy and Odontology, Cheikh Anta Diop University, Dakar, Senegal
Mamadou Mbodj, Department of Medicine, Laboratory of Medical Biophysics and Nuclear Medicine, Faculty of Medicine, Pharmacy and Odontology, Cheikh Anta Diop University, Dakar, Senegal
Mounibe Diarra, Department of Pharmacy, Laboratory of Pharmaceutical Physics, Faculty of Medicine, Pharmacy and Odontology, Cheikh Anta Diop University, Dakar, Senegal
Received: Oct. 21, 2020;       Accepted: Nov. 7, 2020;       Published: Nov. 19, 2020
DOI: 10.11648/j.ejb.20200802.16      View  103      Downloads  30
Abstract
This study investigates the formulation of surfactant-free Pickering emulsions that release a drug at a specific pH to improve its oral bioavailability. The stabilizing nanoparticles composed of hydroxyapatite were obtained by a process of nanoprecipitation. Pickering oil-in-water emulsions stabilized with hydroxyapatite nanoparticles and encapsulating a hydrophobic drug model (ibuprofen) were formulated using a high-energy process with rotor-stator turbo mixer (IKA® T25 digital ultra-Turrax). The experimental approach explored the impact of all formulation parameters, dispersed phase and amount of hydroxyapatite nanoparticles on the physicochemical properties of Pickering emulsions. The system was characterized by a methylene blue test, pH and conductivity measurements, and droplet size determination. In addition, Pickering emulsions stabilized by hydroxyapatite nanoparticles have the advantage of being destabilized in acidic medium leading to the release of the active principle via the droplets. The acidic medium release study (pH equal to 1.2) showed ibuprofen release as a function of initial droplet loading and saturation concentration. In the simulated intestinal medium at pH equal to 6.8, we found a better release of ibuprofen from emulsions that already had saturation in an acid medium. Thus, the interest of these Pickering emulsions lies on the fact that their non-toxicity and hydroxyapatite nanoparticles have advantage of being biocompatible because having the same mineral composition as bones and teeth. In addition, they allow destabilization of the emulsions and release of the drug. These emulsions not only protect patients from the side effects of acid-based drugs, but also contribute to increase the bioavailability of these acidic drugs.
Keywords
Emulsion, Pickering, Nanoparticles, Hydroxyapatite, Oral Bioavailability
To cite this article
Papa Mady Sy, Louis Augustin Diaga Diouf, Alphonse Rodrigue Djiboune, Sidy Mouhamed Dieng, Mamadou Soumboundou, Cecile Diop, Toro Diop, Gora Mbaye, Mamadou Mbodj, Mounibe Diarra, pH-sensitive Pickering Emulsion Stabilized by Hydroxyapatite Nanoparticles: Stability and Controlled Release Study, European Journal of Biophysics. Vol. 8, No. 2, 2020, pp. 52-59. doi: 10.11648/j.ejb.20200802.16
Copyright
Copyright © 2020 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
T. Hamouda, A. Myc, B. Donovan, A. Y. Shih, J. D. Reuter, et J. R. Baker, “A novel surfactant nanoemulsion with a unique non-irritant topical antimicrobial activity against bacteria, enveloped viruses and fungi”, Microbiological Research, vol. 156, n° 1, p. 1-7, 2001, doi: 10.1078/0944-5013-00069.
[2]
O. Sonneville-Aubrun, M. N. Yukuyama, et A. Pizzino, “Chapter 14 - Application of Nanoemulsions in Cosmetics”, in Nanoemulsions, S. M. Jafari et D. J. McClements, Éd. Academic Press, 2018, p. 435-475.
[3]
E. Dickinson, “Hydrocolloids as emulsifiers and emulsion stabilizers”, Food Hydrocolloids, vol. 23, n° 6, p. 1473-1482, august 2009, doi: 10.1016/j.foodhyd.2008.08.005.
[4]
L. Ricaurte, M. Hernández-Carrión, M. Moyano-Molano, A. Clavijo-Romero, et M. X. Quintanilla-Carvajal, “Physical, thermal and thermodynamical study of high oleic palm oil nanoemulsions”, Food Chemistry, vol. 256, p. 62-70, août 2018, doi: 10.1016/j.foodchem.2018.02.102.
[5]
P. M. Sy et al., “Water/Oil Pickering Emulsion Stabilized by Magnesium Oxide Particles: A Potential System with Two Active Substances (Paracetamol and Griseofulvin)”, Open Journal of Biophysics, vol. 08, p. 68, mars 2018, doi: 10.4236/ojbiphy.2018.82006.
[6]
J. Frelichowska, M.-A. Bolzinger, J.-P. Valour, H. Mouaziz, J. Pelletier, et Y. Chevalier, “Pickering w/o emulsions: Drug release and topical delivery”, International Journal of Pharmaceutics, vol. 368, n° 1, p. 7-15, feb. 2009, doi: 10.1016/j.ijpharm.2008.09.057.
[7]
J. Frelichowska, M.-A. Bolzinger, et Y. Chevalier, “Effects of solid particle content on properties of o/w Pickering emulsions”, Journal of Colloid and Interface Science, vol. 351, n° 2, p. 348-356, nov. 2010, doi: 10.1016/j.jcis.2010.08.019.
[8]
P. T. Benvegnu et al., “Synthèses et propriétés de mélanges de nouvelles molécules polyfonctionnelles”, p. 248.
[9]
L. Ridel, “Pickering emulsions: theoretical approach and applications: physico-chemical analysis of interfacial phenomena: obtaining nanometric Pickering emulsions spontaneously and expanded Pickering emulsions”, p. 299.
[10]
Y. Cui, M. Threlfall, et J. S. van Duijneveldt, “Optimizing organoclay stabilized Pickering emulsions”, Journal of Colloid and Interface Science, vol. 356, n° 2, p. 665-671, avr. 2011, doi: 10.1016/j.jcis.2011.01.046.
[11]
M. Errezma, A. B. Mabrouk, A. Magnin, A. Dufresne, et S. Boufi, “Surfactant-free emulsion Pickering polymerization stabilized by aldehyde-functionalized cellulose nanocrystals”, Carbohydrate Polymers, vol. 202, p. 621-630, déc. 2018, doi: 10.1016/j.carbpol.2018.09.018.
[12]
S. U. Pickering, “CXCVI.—Emulsions”, J. Chem. Soc., Trans., vol. 91, n° 0, p. 2001-2021, janv. 1907, doi: 10.1039/CT9079102001.
[13]
W. Ramsden, “Separation of solids in the surface-layers of solutions and ‘suspensions’ (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation).—Preliminary account”, Proc. R. Soc. Lond., vol. 72, n° 477-486, p. 156-164, janv. 1904, doi: 10.1098/rspl.1903.0034.
[14]
M. Tang et al., “Au nanoparticle/graphene oxide hybrids as stabilizers for Pickering emulsions and Au nanoparticle/graphene oxide@polystyrene microspheres”, Carbon, vol. 71, p. 238-248, mai 2014, doi: 10.1016/j.carbon.2014.01.034.
[15]
S. Melle, M. Lask, et G. G. Fuller, “Pickering Emulsions with Controllable Stability”, Langmuir, vol. 21, n° 6, p. 2158-2162, mars 2005, doi: 10.1021/la047691n.
[16]
A. Salerno, M.-A. Bolzinger, P. Rolland, Y. Chevalier, D. Josse, et S. Briançon, “Pickering emulsions for skin decontamination”, Toxicology in Vitro, vol. 34, p. 45-54, août 2016, doi: 10.1016/j.tiv.2016.03.005.
[17]
P. M. Sy et al., “Pickering nano-emulsion as a nanocarrier for pH-triggered drug release”, International Journal of Pharmaceutics, vol. 549, n° 1-2, p. 299-305, oct. 2018, doi: 10.1016/j.ijpharm.2018.07.066.
[18]
P. M. Sy et al., “Tramadol Encapsulation in Aqueous Phase of Water/Oil Pickering Emulsion Stabilized by Magnesium Oxide Particles”, International Journal of Biochemistry and Biophysics, vol. 6, n° 2, p. 37-43, avr. 2018, doi: 10.13189/ijbb.2018.060202.
[19]
M. Diarra, G. Pourroy, D. Muster, M. Zingraff, et C. Boymond, “Elaboration and evaluation of an intraoral controlled release delivering system”, Biomaterials, vol. 19, n° 16, p. 1523-1527, august 1998, doi: 10.1016/S0142-9612(98)00070-2.
[20]
L. S. Dorobantu, A. K. C. Yeung, J. M. Foght, et M. R. Gray, “Stabilization of Oil-Water Emulsions by Hydrophobic Bacteria”, Appl. Environ. Microbiol., vol. 70, n° 10, p. 6333-6336, oct. 2004, doi: 10.1128/AEM.70.10.6333-6336.2004.
[21]
R. Rojas et M. Patricia, “Agitated tank emulsification: role of the operating protocol on catastrophic phase inversion”, thesis, Toulouse, INPT, 2007.
[22]
D. Langevin, S. Poteau, I. Hénaut, et J. F. Argillier, “Crude Oil Emulsion Properties and Their Application to Heavy Oil Transportation”, Oil & Gas Science and Technology, vol. 59, n° 5, p. 511-521, sept. 2004, doi: 10.2516/ogst:2004036.
[23]
M. Seiller et F. Puisieux, Les systèmes dispersés. I, I,. Paris: Technique et documentation Lavoisier, 1983.
[24]
Y. Chevalier et M.-A. Bolzinger, “Emulsions stabilized with solid nanoparticles: Pickering emulsions”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 439, p. 23-34, déc. 2013, doi: 10.1016/j.colsurfa.2013.02.054.
[25]
F. Yang, Q. Niu, Q. Lan, et D. Sun, “Effect of dispersion pH on the formation and stability of Pickering emulsions stabilized by layered double hydroxides particles”, Journal of Colloid and Interface Science, vol. 306, n° 2, p. 285-295, févr. 2007, doi: 10.1016/j.jcis.2006.10.062.
[26]
D. B. Jack, Handbook of Clinical Pharmacokinetic Data. Springer, 1992.
[27]
M. Yazdanian, K. Briggs, C. Jankovsky, et A. Hawi, “The “High Solubility” Definition of the Current FDA Guidance on Biopharmaceutical Classification System May Be Too Strict for Acidic Drugs”, Pharm Res, vol. 21, n° 2, p. 293-299, févr. 2004, doi: 10.1023/B:PHAM.0000016242.48642.71.
[28]
M. Miastkowska, E. Sikora, J. Ogonowski, M. Zielina, et A. Łudzik, “The kinetic study of isotretinoin release from nanoemulsion”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 510, p. 63-68, déc. 2016, doi: 10.1016/j.colsurfa.2016.07.060.
[29]
T. Higuchi, “Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices”, Journal of Pharmaceutical Sciences, vol. 52, n° 12, p. 1145-1149, déc. 1963, doi: 10.1002/jps.2600521210.
[30]
P. M. Sy et al., “Formulation, Stability and Physicochemical Properties of Pickering Emulsions: An overview, Applied Physics Research, vol. 11, N°1, 2019, doi: 10.5539/apr.v11n1p41.
Browse journals by subject